Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637413

ABSTRACT

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Subject(s)
Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Animals , Rats , Axons/metabolism , Axons/pathology , Diabetes Mellitus, Experimental/metabolism , Nerve Growth Factor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Taurine/pharmacology , Taurine/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
Cytokine ; 164: 156139, 2023 04.
Article in English | MEDLINE | ID: mdl-36738525

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-ß1) produced by BMSCs in bone tissue repair. METHODS: To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS: Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-ß receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-ß1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS: Our findings provide evidence that the biological mechanism of BMSC-produced TGF-ß1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.


Subject(s)
Mesenchymal Stem Cells , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Osteogenesis , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Bone Marrow Cells/metabolism
3.
PLoS One ; 18(1): e0279029, 2023.
Article in English | MEDLINE | ID: mdl-36656826

ABSTRACT

The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCß4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Long-Term Potentiation/genetics , Depression , Memory Disorders/chemically induced , Memory Disorders/genetics , Spatial Learning , Computational Biology
4.
Adv Exp Med Biol ; 1370: 227-233, 2022.
Article in English | MEDLINE | ID: mdl-35882798

ABSTRACT

Diabetic nephropathy is one of the major diabetic complications which has become the major cause of end-stage renal disease. It has been demonstrated that apoptosis induced by hyperglycemia is a critical factor in the pathophysiology of diabetic nephropathy. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The protective effect of taurine against apoptosis in diabetic kidney deserves to be explored. In the present study, mRNA expression of cysteinyl aspartate-specific proteinase-3 (caspase-3) and caspase-9 was examined, and the activity of caspase-3 was also detected as the marker of apoptosis. The expression of Bax and Bcl-2 was detected by Western blot. In addition, the level of total Akt and phosphorylated Akt (p-Akt) was measured. We found that caspase-3 and caspase-9 mRNA expression was decreased in diabetic kidney, which was recovered by taurine treatment. The activity of caspase-3 was increased in diabetic kidney, while the increased activity was significantly attenuated after taurine treatment. We also found that the expressions of Bax and Bcl-2 were disturbed in diabetic kidney, which were reversed by taurine treatment. The decrease of the p-Akt level was also prevented by taurine treatment. These results indicated that taurine-ameliorated apoptosis in diabetic kidney may be through activating of the Akt signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Kidney , Mammals/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Rats , Taurine/metabolism , Taurine/pharmacology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
5.
Adv Exp Med Biol ; 1370: 235-242, 2022.
Article in English | MEDLINE | ID: mdl-35882799

ABSTRACT

Hyperglycemia associated with diabetes mellitus (DM) causes oxidative stress, which is involved in the onset and development of diabetic neuropathy. Taurine, a powerful antioxidant, is an effective inhibitor of oxidative stress. The present experiment was conducted to explore the effect of taurine treatment on alterations in body weight, blood glucose, oxidative stress, and Keap1-Nrf2 signaling in the spinal cords of DM rats. The DM rat model was established by STZ injection, and taurine was administered in the drinking water. Body weight and blood glucose were recorded during the experiment. The expression of Gap-43 and MBP proteins was examined by Western blot. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were examined as indicators of oxidative stress. The expression of Keap1, Nrf2, and HO-1 gene was examined by real-time PCR. The results showed that compared with the control group, the body weight was decreased, blood glucose was increased, and both Gap-43 and MBP expression were decreased in DM rats, which were all remarkably reversed by taurine treatment. Oxidative stress, as reflected by lower SOD activity and higher MDA concentration, was inhibited in taurine-treated DM rats. Supplemental taurine also downregulated the mRNA level of Keap1, while upregulating Nrf2 and HO-1 mRNA levels. These results showed that taurine inhibits oxidative stress in the spinal cords of DM rats, an effect that might involve the regulation of Keap1-Nrf2 signaling.


Subject(s)
Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Animals , Blood Glucose , Body Weight , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , GAP-43 Protein/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Rats , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Taurine/pharmacology
6.
Stem Cell Res Ther ; 12(1): 436, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34348774

ABSTRACT

BACKGROUND: N-hexane, with its metabolite 2,5-hexanedine (HD), is an industrial hazardous material. Chronic hexane exposure causes segmental demyelination in the peripheral nerves, and high-dose intoxication may also affect central nervous system. Demyelinating conditions are difficult to treat and stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) is a promising novel strategy. Our previous study found that BMSCs promoted motor function recovery in rats modeling hexane neurotoxicity. This work aimed to explore the underlying mechanisms and focused on the changes in spinal cord. METHODS: Sprague Dawley rats were intoxicated with HD (400 mg/kg/day, i.p, for 5 weeks). A bolus of BMSCs (5 × 107 cells/kg) was injected via tail vein. Demyelination and remyelination of the spinal cord before and after BMSC treatment were examined microscopically. Cultured oligodendrocyte progenitor cells (OPCs) were incubated with HD ± BMSC-derived conditional medium (BMSC-CM). OPC differentiation was studied by immunostaining and morphometric analysis. The expressional changes of Hes1, a transcription factor negatively regulating OPC-differentiation, were studied. The upstream Notch1 and TNFα/RelB pathways were studied, and some key signaling molecules were measured. The correlation between neurotrophin NGF and TNFα was also investigated. Statistical significance was evaluated using one-way ANOVA and performed using SPSS 13.0. RESULTS: The demyelinating damage by HD and remyelination by BMSCs were evidenced by electron microscopy, LFB staining and NG2/MBP immunohistochemistry. In vitro cultured OPCs showed more differentiation after incubation with BMSC-CM. Hes1 expression was found to be significantly increased by HD and decreased by BMSC or BMSC-CM. The change of Hes1 was found, however, independent of Notch1 activation, but dependent on TNFα/RelB signaling. HD was found to increase TNFα, RelB and Hes1 expression, and BMSCs were found to have the opposite effect. Addition of recombinant TNFα to OPCs or RelB overexpression similarly caused upregulation of Hes1 expression. The secretion of NGF by BMSC and activation of NGF receptor was found important for suppression of TNFα production in OPCs. CONCLUSIONS: Our findings demonstrated that BMSCs promote remyelination in the spinal cord of HD-exposed rats via TNFα/RelB-Hes1 pathway, providing novel insights for evaluating and further exploring the therapeutical effect of BMSCs on demyelinating neurodegenerative disease.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Oligodendrocyte Precursor Cells , Remyelination , Animals , Cell Differentiation , Hexanones , Rats , Rats, Sprague-Dawley , Spinal Cord , Transcription Factor HES-1/genetics , Tumor Necrosis Factor-alpha/genetics
7.
Biosci Rep ; 41(4)2021 04 30.
Article in English | MEDLINE | ID: mdl-33792642

ABSTRACT

Increasing evidence suggests that n-hexane induces nerve injury via neuronal apoptosis induced by its active metabolite 2,5-hexanedione (HD). However, the underlying mechanism remains unknown. Studies have confirmed that pro-nerve growth factor (proNGF), a precursor of mature nerve growth factor (mNGF), might activate apoptotic signaling by binding to p75 neurotrophin receptor (p75NTR) in neurons. Therefore, we studied the mechanism of the proNGF/p75NTR pathway in HD-induced neuronal apoptosis. Sprague-Dawley (SD) rats were injected with 400 mg/kg HD once a day for 5 weeks, and VSC4.1 cells were treated with 10, 20, and 40 mM HD in vitro. Results showed that HD effectively induced neuronal apoptosis. Moreover, it up-regulated proNGF and p75NTR levels, activated c-Jun N-terminal kinase (JNK) and c-Jun, and disrupted the balance between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Our findings revealed that the proNGF/p75NTR signaling pathway was involved in HD-induced neuronal apoptosis; it can serve as a theoretical basis for further exploration of the neurotoxic mechanisms of HD.


Subject(s)
Apoptosis , Hexanones/pharmacology , Nerve Growth Factors/metabolism , Neurons/metabolism , Neurotoxins/pharmacology , Protein Precursors/metabolism , Spinal Cord/drug effects , Animals , Cell Line, Tumor , Hexanones/toxicity , MAP Kinase Kinase 4/metabolism , Male , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurotoxins/toxicity , Rats , Rats, Sprague-Dawley , Receptors, Growth Factor/metabolism , Signal Transduction , Spinal Cord/cytology , Spinal Cord/metabolism
8.
Amino Acids ; 53(3): 395-406, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33598769

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes and axonopathy is its main pathological feature. Previous studies suggested an advantage of taurine against diabetes. However, there are few reports which study the effect of taurine against axonopathy. In this study, we confirmed that taurine significantly decreased blood glucose level, mitigated insulin resistance and improved dysfunctional nerve conduction in diabetic rats. Taurine corrected damaged axonal morphology of sciatic nerve in diabetic rats and induced axon outgrowth of Dorsal root ganglion (DRG) neurons exposed to high glucose. Taurine up-regulated phosphorylation levels of PI3K, Akt, and mTOR in sciatic nerve of diabetic rats and DRG neurons exposed to high glucose. However, Akt and mTOR inhibitors (MK-2206 and Rapamycin) blocked the effect of taurine on improving axonal damage. These results indicate that taurine ameliorates axonal damage in sciatic nerve of diabetic rats by activating PI3K/Akt/mTOR signal pathway. Our findings provide taurine as a potential candidate for axonopathy and a new evidence for elucidating protective mechanism of taurine on DPN.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Ganglia, Spinal/drug effects , Sciatic Nerve/drug effects , Signal Transduction/drug effects , Taurine/therapeutic use , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Ganglia, Spinal/growth & development , Ganglia, Spinal/metabolism , Insulin Resistance , Neural Conduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Sciatic Nerve/metabolism , TOR Serine-Threonine Kinases/metabolism
9.
Mol Cell Biochem ; 469(1-2): 53-64, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279149

ABSTRACT

It has been shown that the conditioned medium of bone mesenchymal stem cells (BMSC-CM) can inhibit apoptosis of neural cells exposed to 2,5-hexanedione (HD), but its protective mechanism remains unclear. To investigate the underlying mechanism, VSC4.1 cells were given HD and 5, 10 and 15% BMSC-CM (v/v) in the current experiment. Our data showed that BMSC-CM concentration-dependently attenuated HD-induced cell apoptosis. Moreover, BMSC-CM remarkably decreased the mitochondrial cytochrome c (Cyt C) release and the caspase-3 activity in HD-given VSC4.1 cells. Given a relatively high expression of NGF in BMSCs and BMSC-CM, we hypothesized that NGF might be an important mediator of the protection of BMSC-CM against apoptosis induced by HD. To verify our hypothesis, the VSC4.1 cells were administrated with NGF and anti-NGF antibody in addition to HD. As expected, NGF could perfectly mimic BMSC-CM's protective role and these beneficial effects were abolished by anti-NGF antibody intervention. To further explore its mechanism, inhibitors of TrkA and Akt were given to the VSC4.1 cells and NGF/Akt/Bad pathway turned out to be involved in anti-apoptotic role of BMSC-CM. Based on these findings, it was revealed that BMSC-CM beneficial role was mediated by NGF and relied on the Akt/Bad pathway.


Subject(s)
Apoptosis/drug effects , Culture Media, Conditioned/pharmacology , Hexanones/toxicity , Mesenchymal Stem Cells/metabolism , Nerve Growth Factor/pharmacology , Neurons/drug effects , Proto-Oncogene Proteins c-akt/metabolism , bcl-Associated Death Protein/metabolism , Animals , Caspase 3/metabolism , Cytochromes c/metabolism , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/metabolism , Nerve Growth Factor/metabolism , Neurons/metabolism , Neurons/ultrastructure , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Rats , Receptor, trkA/antagonists & inhibitors , Signal Transduction/drug effects
10.
Toxicol Lett ; 320: 95-102, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31760062

ABSTRACT

Exposure to organic solvent in industry, including n-hexane is correlated with central-peripheral axonopathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). However, the underlying mechanism is still largely unknown. Recently identified microRNAs (miRNAs) may play important roles in toxicant exposure and in the process of toxicant-induced neuropathys. To examine the role of miRNAs in HD-induced toxicity, neuropathic animal model was successfully built. miRNA microarray analysis revealed 105 differentially expressed miRNAs after HD exposure. Bioinformatics analysis showed that "Axon" and "Neurotrophin Signaling Pathway" was the top significant GO term and pathway, respectively. 7 miRNAs both related to "Axon" and "Neurotrophin Signaling Pathway" were screened out and further confirmed by Real-Time PCR. Correspondingly, the deregulation expression levels of proteins of four target genes (GSK3ß, Map3k1, BDNF and MAP1B) were further confirmed via western blot, verifying the results of gene target analysis. Taken together, our results showed that the axon-related miRNAs to be associated with MAP1B or neurotrophin signal pathways changed in nerve tissues following HD exposure. These miRNAs may play important roles in HD-induced neurotoxicity.


Subject(s)
Axons/drug effects , Hexanones/toxicity , MicroRNAs/metabolism , Neurotoxicity Syndromes/etiology , Sciatic Nerve/drug effects , Solvents/toxicity , Spinal Cord/drug effects , Animals , Axons/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Databases, Genetic , Gene Expression Regulation , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , Male , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Rats, Sprague-Dawley , Sciatic Nerve/metabolism , Signal Transduction , Spinal Cord/metabolism , Transcriptome
11.
Amino Acids ; 52(1): 87-102, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31875259

ABSTRACT

Type 2 Diabetes causes learning and memory deficits that might be mediated by hippocampus neuron apoptosis. Studies found that taurine might improve cognitive deficits under diabetic condition because of its ability to prevent hippocampus neuron apoptosis. However, the effect and mechanism is not clear. In this study, we explore the effect and mechanism of taurine on inhibiting hippocampus neuron apoptosis. Sixty male Sprague-Dawley rats were randomly divided into control, T2D, taurine treatment (giving 0.5%, 1%, and 2% taurine in drinking water) groups. Streptozotocin was used to establish the diabetes model. HT-22 cell (hippocampus neurons line) was used for in vitro experiments. Morris Water Maze test was used to check the learning and memory ability, TUNEL assay was used to measure apoptosis and nerve growth factor (NGF); Akt/Bad pathway relevant protein was detected by western blot. Taurine improved learning and memory ability and significantly decreased apoptosis of the hippocampus neurons in T2D rats. Moreover, taurine supplement also inhibited high glucose-induced apoptosis in HT-22 cell in vitro. Mechanistically, taurine increased the expression of NGF, phosphorylation of Trka, Akt, and Bad, as well as reduced cytochrome c release from mitochondria to cytosol. However, beneficial effects of taurine were blocked in the presence of anti-NGF antibody or Akt inhibitor. Taurine could inhibit hippocampus neuron apoptosis via NGF-Akt/Bad pathway. These results provide some clues that taurine might be efficient and feasible candidate for improvement of learning and memory ability in T2D rats.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Nerve Growth Factor/genetics , Receptor, trkA/genetics , Taurine/pharmacology , Animals , Apoptosis/drug effects , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Glucose/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Maze Learning , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-akt/genetics , Rats , Signal Transduction , bcl-Associated Death Protein/genetics
12.
Adv Exp Med Biol ; 1155: C1, 2019.
Article in English | MEDLINE | ID: mdl-31605371

ABSTRACT

Affiliations of authors Muhammad Shahbaz and Shahid Alam were incorrect in the published book. This has now been corrected as below.

13.
Exp Cell Res ; 383(2): 111557, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31415759

ABSTRACT

Diabetic peripheral neuropathy is a common complications of Type 2 Diabetes and its main pathological feature is myelin sheath damage of peripheral nerve that was induced by Schwann cells (SCs) apoptosis. Increasing evidence suggested that taurine might play a role in improving DPN because of its ability to prevent SCs apoptosis. In this study, we explore the effect of taurine on preventing SCs apoptosis and its underlying mechanism. Sprague Dawley rats were treated with streptozotocin to establish the diabetes model. Rats were randomly divided into control, diabetes, taurine treatment (as giving 0.5%, 1% and 2% taurine in drinking water) groups. RSC96 cell (a rat SCs line) was used for intervention experiments in vitro. Results showed that taurine significantly corrected morphology of damaged myelin sheath and inhibited SCs apoptosis in sciatic nerve of diabetic rats. Moreover, taurine prevented apoptosis of RSC96 cells exposed to high glucose. Mechanistically, taurine up-regulated NGF expression and phosphorylation levels of Akt and GSK3ß, while, blocking activation of NGF and phosphorylation of Akt and GSK3ß increased apoptosis of high glucose-exposed RSC96 cells with taurine supplement. These results revealed taurine improved the myelin sheath damage of sciatic nerve in diabetic rats by controlling SCs apoptosis via NGF/Akt/GSK3ß signaling pathways, which provides some clues that taurine might be effective and feasible candidate for the treatment of DPN.


Subject(s)
Apoptosis/drug effects , Diabetic Neuropathies/pathology , Myelin Sheath/drug effects , Protective Agents/pharmacology , Schwann Cells/drug effects , Sciatic Nerve/drug effects , Taurine/pharmacology , Animals , Demyelinating Diseases/pathology , Demyelinating Diseases/prevention & control , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/etiology , Glycogen Synthase Kinase 3 beta/metabolism , Male , Myelin Sheath/pathology , Nerve Growth Factor/metabolism , Protective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Schwann Cells/physiology , Sciatic Nerve/pathology , Signal Transduction/drug effects , Streptozocin , Taurine/therapeutic use
14.
Adv Exp Med Biol ; 1155: 13-24, 2019.
Article in English | MEDLINE | ID: mdl-31468382

ABSTRACT

Taurine is a sulfur-containing amino acid which has strong activities in enhancing immunity. Gut microbiota is closely interrelated with intestinal mucosal immunity, but the effects and mechanisms of taurine on intestinal microbiota and mucosal immune cells under an immunosuppressive condition remain unclear. This study was conducted to investigate the effect of taurine on gut microbiota and immune cells in Peyer's patches (PPs) of dexamethasone (Dex)-induced immunosuppressive mice. Mice (4-week-old, Male) were randomly divided into three groups: the Control group (n = 12), the Dex-induced immunosuppressive model group (n = 12) and the taurine intervention group (n = 12). The model was established by Dex injection for 7 days and the taurine intervention group was gavaged 100 mg/kg soluble taurine for 30 days. The changes of intestinal microbiota and immune cells in PPs were tested by denaturing gradient gel electrophoresis (DGGE) and flow cytometry, respectively. Results showed that the microbiota in immunosuppressive mice was obvious different compared with control group, in which, the Lachnospiraceae and Ruminococcaceae groups were significantly reduced, and their reduction were reversed after taurine intervention. Compared to the control group, the total cell number in PPs, as well as the subsets of CD3+ cells (T cells), CD19+ cells (B cells) in model groups were significantly lower, and they were dramatically improved after taurine treatment. Our results suggested that taurine has a positive effect on i ntestinal homeostasis of the immunosuppressive mice.


Subject(s)
Gastrointestinal Microbiome/drug effects , Immune Tolerance , Peyer's Patches/drug effects , Taurine/pharmacology , Animals , Homeostasis , Male , Mice , Random Allocation
15.
Adv Exp Med Biol ; 1155: 381-390, 2019.
Article in English | MEDLINE | ID: mdl-31468416

ABSTRACT

Taurine (2-aminoethanesulfonic acid) has positive effects on the formation of immune systems. In this study, we evaluated the effects of taurine on the development of T lymphocyte subpopulations in thymus of immunosuppresive mice. The immunosuppressed mice model was established by intraperitoneal injection of dexamethasone (Dex) for 7 days. Mice (male, Kunming strain) were randomly divided into three groups, the normal control group (Cont.), the Dex-induced immunosuppressive model group (Dex + PBS), and the taurine intervention group (Dex + TAU). Taurine was administered at a dose of 200 mg/kg for 30 days or until euthanasia. Total cell numbers in the thymi of mice were evaluated by cell count, and the flow cytometry was used to determine the proportion of different cell subsets. Our results showed that the size and weight of thymi of Dex + PBS group were significantly smaller than those of Cont. group, and taurine administration efficiently increased the thymus index. Taurine also significantly increased the number of CD4- CD8- double negative (DN), CD4+ CD8+ double positive (DP), CD4+ single positive (CD4+) and CD8+ SP (CD8+) cells compared with the Dex + PBS group, but did not affect the CD4+/CD8+ cell ratio in thymus of Dex-induced immunoseppressive mice. Our results suggested that taurine has a positive effect on thymus differentiation in Dex-induced immunosuppressive mice.


Subject(s)
Cell Differentiation , Immunosuppression Therapy , T-Lymphocyte Subsets/drug effects , Taurine/pharmacology , Thymus Gland/drug effects , Animals , CD4-CD8 Ratio , Dexamethasone , Flow Cytometry , Male , Mice , Random Allocation , T-Lymphocyte Subsets/cytology
16.
Adv Exp Med Biol ; 1155: 747-754, 2019.
Article in English | MEDLINE | ID: mdl-31468445

ABSTRACT

Arsenate, a well known toxicant, can induce injury in nerve system via oxidative stress and apoptosis. This study was designed to explore the protective effect of taurine against arsenite-induced neurotoxicity and its related mechanism in primary cortical neurons. The cells were treated with arsenite with or without taurine. Twenty-Four hours later, cell viability was examined using the MTT assay. The activity of caspase-3 was analyzed and the level of Akt and p-Akt were examined by western blot. The results show that taurine treatment significantly attenuates the decrease in cell viability of arsenite-exposed primary cortical neurons. Taurine also reversed the arsenite-induced increase in caspase-3 activity. The decrease in p-Akt levels induced by arsenite exposure was prevented by taurine treatment. Thus, taurine attenuated the effect of arsenite on primary cortical neurons, an effect that may involve the Akt pathway.


Subject(s)
Apoptosis , Arsenic/toxicity , Neurons/drug effects , Taurine/pharmacology , Caspase 3 , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction
17.
Adv Exp Med Biol ; 1155: 787-799, 2019.
Article in English | MEDLINE | ID: mdl-31468448

ABSTRACT

It was reported that apoptosis of Schwann cells could increase in the diabetic rats. The studies showed that taurine inhibited apoptosis in a variety of cells. However, there were few reports on studying the protection of taurine against apoptosis of Schwann cells induced by high glucose (HG) and the underlying mechanism. In our study, the cells were divided into five groups: Control: the normal medium; HG group: 50 mM high glucose; T1: 50 mM high glucose+Taurine (10 mM) group; T2: 50 mM high glucose+Taurine (20 mM) group; T3: 50 mM high glucose+Taurine (40 mM) group. We used MTT and Tunel assays to measure the cell viability and apoptosis, respectively. Then, we also used western blotting to detect the protein levels of apoptosis-related protein. The results demonstrate that taurine promoted cell viability and decreased apoptosis in RSC96 cells exposed to HG. Furthermore, taurine markedly improved imbalance of Bax and Bcl-2, inhibited the translocation of Cytochrome C (Cyt C) from mitochondria to cytosol and reduced caspase-3 activity in HG-induced RSC96 cells. Our results indicate that taurine protect against apoptosis of Schwann cells induced by HG via inhibiting mitochondria-dependent caspase-3 pathway.


Subject(s)
Apoptosis , Schwann Cells/drug effects , Taurine/pharmacology , Animals , Cells, Cultured , Diabetes Mellitus, Experimental , Glucose/adverse effects , Rats , Schwann Cells/cytology
18.
Adv Exp Med Biol ; 1155: 869-874, 2019.
Article in English | MEDLINE | ID: mdl-31468453

ABSTRACT

Our group previously reported that taurine has a protective capacity on the hippocampus and cerebellum of arsenic (As)-exposed mouse. In the present study, we explore whether taurine demonstrates protection against As toxicity in primary cortical neurons. Primary cortical neurons were exposed to various concentrations of arsenite and cell viability was assessed to confirm the toxicity of As on cortical neurons. The protection of taurine was examined after primary cortical neurons were treating with arsenite and taurine for 24 h. The cell viability was examined by MTT and caspase-3 activity assay. The expression of Bax and Bcl-2 was determined by western blot. The results showed that As exposure reduced cell viability and enhanced the activity of caspase-3, which were markedly inhibited by taurine treatment. The expression of Bax and Bcl-2 were disturbed by As exposure, which were reversed by taurine. These results indicated that taurine expose protective effect on As-exposed primary cortical neurons and its mechanism maybe involved the regulation of Bax/Bcl-2.


Subject(s)
Arsenic/toxicity , Neurons/drug effects , Neuroprotective Agents/pharmacology , Taurine/pharmacology , Animals , Apoptosis , Cell Survival , Cells, Cultured , Mice , Neurons/cytology , Primary Cell Culture , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
19.
Adv Exp Med Biol ; 1155: 875-887, 2019.
Article in English | MEDLINE | ID: mdl-31468454

ABSTRACT

Diabetes mellitus (DM) is a condition characterized by chronic hyperglycemia, which leads to diabetic neuropathy and apoptosis in the spinal cord. Taurine has been found to ameliorate the diabetic neuropathy and control apoptosis in various tissues. However, there are few reports that discuss the direct relationship between spinal cord and anti-apoptotic effect of taurine. In this study, DM was induced in male SD rats with STZ @ 25 mg/Kg of body weight in combination with high fat diet. After 2 weeks, they were divided into four groups as DM: diabetic rats, T1 (0.5%), T2 (1%) and T3 (2%) taurine solution, while control group was non-diabetic rats (no treatment). The results showed that DM increased apoptosis, decreased phosphorylated Akt and Bad. DM decreased expression of Bcl-2 and increased the Bax. Moreover, the release of cytochrome c into cytosol was increased in DM and activation of caspase-3 was also increased. However, taurine reversed all these abnormal changes in a dose dependent manner. Our results suggested the involvement of Akt/Bad signaling pathway and mitochondrial apoptosis pathway in protective effect of taurine against apoptosis in the spinal cord of diabetic rats. Therefore, taurine may be a potential medicine against diabetic neuropathy by controlling apoptosis.


Subject(s)
Apoptosis , Diabetic Neuropathies , Spinal Cord/drug effects , Taurine/pharmacology , Animals , Diabetes Mellitus, Experimental , Male , Rats , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/cytology
20.
Adv Exp Med Biol ; 1155: 889-903, 2019.
Article in English | MEDLINE | ID: mdl-31468455

ABSTRACT

Diabetes causes memory loss. Hippocampus is responsible for memory and increased apoptosis was found in diabetes patients. Taurine improved memory in diabetes condition. However, mechanism is unclear. In current study, hippocampal cell line HT-22 cells were subjected to analysis as five groups i.e. Control, High glucose (HG) at concentration of 150 mM, HG + 10 mM (T1), 20 mM (T2) and 40 mM (T3) taurine solution. TUNEL assay showed that HG increased the number of apoptotic cell significantly while taurine reduced apoptosis. Taurine increased phosphorylation of Akt in HT-22 cell treated with HG, and increased phosphorylation of Bad (p-Bad) was seen suggesting involvement of Akt/Bad signaling pathway. Expression of Bcl-2 was reduced in HG group but taurine improved this. Bax expression showed opposite trend. This indicated that taurine may reduce apoptosis by controlling balance of Bcl-2 and Bax. When the activation of Akt was blocked by using of perifosine, the effect of taurine disappears either partially or altogether. Thus, it was clear that taurine reduces apoptosis via Akt/Bad pathway in HT-22 cells exposed to HG which further improves downstream balance of Bcl-2 and Bax. This mechanism may be involved in apoptosis of hippocampus cells in diabetic condition.


Subject(s)
Apoptosis , Neurons/drug effects , Taurine/pharmacology , Animals , Cell Line , Glucose , Hippocampus/cytology , Mice , Phosphorylation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...